Особенности электростатической покраски

Технология

Впервые электростатический распылитель был использован в 1941 году американским изобретателем Г. Рансбургом. Методика подразумевала использование электрических полей, по которым передвигаются заряженные частицы краски. Жидкий лакокрасочный материл вступает во взаимодействие с электродом, расположенным в пистолете, в результате чего краске передается высоковольтный отрицательный заряд (60-100 кВт). Заряженные частицы, выйдя из сопла краскопульта, направляются по линиям электростатического поля к заземленному изделию, на которое наносится ЛКМ.

Окрасочный факел возникает благодаря обоюдному отталкиванию заряженных частиц лакокрасочного материала. Важное отличие данной технологии от других методов состоит в отсутствии необходимости в красочном тумане, так как частицы направляются по заданным линиям. Коэффициент переноса краски может колебаться от 70 до 98 процентов. Показатель переноса зависит от проводимости окрашиваемого материала, формы изделия и других косвенных факторов.

Электростатический способ позволяет сократить расход ЛКМ, а сам процесс покраски делает проще. При окрашивании металлических труб традиционным способом нужно несколько раз переворачивать изделие. В случае же с электростатическим пистолетом деталь поворачивать нет необходимости, так как заряженные частицы направляются по силовым линиям и легко огибают препятствия. Окрашивание осуществляется очень равномерно, поскольку на уже обработанном месте краска отталкивает излишки поступающего материала.

Электростатическая окраска металлических изделий

На рис. 17-36 схематически показано устройство для окраски, или эмалирования металлических изделий. На заземленном конвейере 1 подвешены изделия 2,подлежащие окраске. Они движутся покрасочной камере 3,внутри которой на изоляторах 4подвешены рамы 5с натянутой сеткой из тонких проводов. Эти провода через изоляторы 4присоединены к отрицательному зажиму источника высокого напряжения 6и являются коронирующими электродами. При высоком напряжении (до 150 кв

)возникает коронный разряд и частицы краски, вдуваемой через сопло 7 пневматического распылителя, заряжаясь отрицательно, движутся к положительно заряженным изделиям конвейера и осаждаются на них, покрывая их плотным слоем. Окрасочная камера снабжается специальным вытяжным устройством 8. Мощность источника высокого напряжения обычно не превышает 150

вт. Электроокраска широко применяется в производстве автомашин, сельскохозяйственных машин, электротехнического оборудования и др.

Рис. 17-36.

Электростатическая окраска изделий.

Типы распыления

Применяются два вида электростатического распыления — классическое и каскадное. Классика предполагает, что по высоковольтному кабелю на электростатический краскопульт поступает постоянный ток под высоким напряжением. Классическая схема имеет ряд существенных недостатков. Прежде всего, речь идет о нестабильности напряжения в пистолетном электроде. Кроме того, красить достаточно неудобно, так большой кабель стесняет в действиях, а для отключения электропитания нужно всякий раз добираться до трансформатора.

В каскадной методике высокое напряжение формируется не вовне, а в самом пистолете. К пистолету по низковольтному кабелю направляется напряжение всего лишь в 12 В, а уже внутри устройства происходит генерация высокого напряжения. Преобразование осуществляется на каскаде краскопульта. Применяемый кабель тонок и гибок, благодаря чему работать с ним очень удобно.

Каскадный способ позволяет отключать поступление электричества независимо от генератора, а также контролировать уровень напряжения, выбирая подходящий для того или иного вида материала. Само напряжение отличается высокой стабильностью, что позволяет существенно сократить расход ЛКМ. Главный недостаток каскадного распыления — высокая стоимость оборудования. Однако затраты быстро окупаются за счет экономичности данной технологии.

Электростатическое распыление имеет некоторые ограничения, диктуемые следующими обстоятельствами:

  1. Свойствами лакокрасочного материала. Чтобы краска правильно заряжалась на электроде, необходимо сопротивление на уровне не меньше 30 кОм. В противном случае эффективность покраски в электростатическом поле радикально сокращается. В качестве примера лакокрасочного материла с низким уровнем сопротивления можно привести составы со значительными добавками металлической пудры (к таковым относятся эмали типа «металлик»). До последнего времени электростатическое окрашивание не использовалось при нанесении водорастворимых красок, так как существовал высокий риск коротких замыканий по причине электропроводимости жидкости. Последние модели оборудования для электростатического окрашивания позволяют работать с водорастворимыми ЛКМ.
  2. Свойствами материала. Не проводящие ток изделия, такие как пластик и древесина, окрашивать сложно. Облегчить процесс можно при помощи специальных токопроводящих грунтов (в случае с пластиком) или увлажнения (для древесины).
  3. Формой окрашиваемой детали. Как было сказано выше, электростатический метод позволяет окрашивать изделия разных форм, однако в замкнутом токопроводящем контуре напряжение электростатического поля равняется нулю. Поэтому в глубоких выемках отсутствует электрическое поле, из-за чего на такие участки не попадают частицы лакокрасочного материала. Более того, не попадая во всевозможные впадины, краска концентрируется на других участках (например, на кромках), что приводит образованию слишком толстого слоя покрытия. Чтобы избежать подобных проблем (их называют контуром Фарадея), окрашивание труднодоступных мест осуществляется обычным краскопультом — безвоздушным или пневматическим.

Электростатическая очистка газов

Электростатические устройства для очистки газов называются электрофильтрами (рис. 17-35).Так же как и в предыдущем случае, частицы пыли, золы, цемента, поступающие с газом на вход фильтра 5, должны быть предварительно заряжены. Однако они взвешены в газе и контактная электризация их невозможна. Поэтому в фильтрах для электризации частиц используется коронный разряд. В корпусе фильтра 1 (рис. 17-35), при помощи проходного изолятора 2,установлен центральный электрод 3. Источником высокого напряжения между корпусом фильтра нецентральным электродом, создается разность потенциалов и при определенном ее значении на электроде 3возникает коронный разряд.

В газе получается поток электронов, направленный к корпусу 1. Этими электронами и заряжаются посторонние частицы содержащиеся в газе. Заряд частиц нейтрализуется при достижении ими корпуса фильтра 1, они осаждаются на нем и удаляются из фильтра.

Рис. 17-35.

Электрический фильтр.

Краскопульт «Star 3001»

В качестве примера разберем краскораспылитель «Star 3001». В данном аппарате применяется каскадный способ образования высокого напряжения. Изготавливаются как механические, так и автоматические модификации оборудования. Обе модели могут работать как с безвоздушным распылением, так и с воздушной смесью.

Для водорастворимых ЛКМ и для красок на базе растворителя также существуют отдельные модификации. Каждая модель, в зависимости от ее предназначения, может значительно отличаться по используемым в ней материалам, а также иметь свои конструктивные особенности.

Таким образом, ассортимент оборудования широк, поэтому перед покупкой нужно определиться с тем, как будет использоваться электростатический пистолет. Аппарат «Star 3001» предназначен для работы с ЛКМ на водной основе. Это означает защищенность устройства от короткого замыкания, поскольку конструкция произведена из специального материала. А вот для работы с органическим растворителем «Star 3001» не подходит, поэтому нужно поискать модификацию, корпус которой инертен по отношению к растворителям.

Проблема с контуром Фарадея в распылителе данной модели решается отключением электропитания. При отсутствии питания ЛКМ распыляется только под воздействием давления. Клавиша управления напряжением располагается прямо на корпусе краскопульта, что очень удобно. Кроме того, давление можно контролировать своими руками — достаточно нажать на курок. Пистолет также оснащен памятью, благодаря чему поддерживается до трех вариантов электростатического поля на каждый вид краски.

Немаловажный параметр любого применяемого лакокрасочного материала — электрическая сопротивляемость. Вместе с аппаратом «Star 3001» поставляется зонд, который тестирует ЛКМ на сопротивляемость, тем самым обеспечивая наилучший показатель для электростатического поля.

Несмотря на техническую оснащенность, такой краскораспылитель отличается простотой обслуживания. Корпус легко разбирается, после чего все механизмы доступны визуальному наблюдению. В случае поломки замене подлежат любые детали пистолета. Это обстоятельство позволяет упростить ремонтные работы, а также удешевить их.

Следует отметить малый вес устройства — всего 900 граммов. Благодаря легковесности, работать с аппаратом физически не тяжело, а за счет эргономичной рукоятки еще и удобно.

Для промышленного применения разработана модификация «LARIUS 2 Paint Systems». В такой системе применяется двойная диафрагма, за счет которой краска нагнетается под малым давлением.

8.3. Электростатическое распыление

По значению и распространению в промышленности электростатическое распыление занимает одно из ведущих мест. Этот способ экономичен, обеспечивает хорошее качество покрытий, возможность автоматизации процесса и высокую производительность. Путем воздействия электрического поля на аэродинамичные частицы достигается практически полное осаждение распыляемого лакокрасочного материала на изделия (потери не >10%).

В электрическом поле можно окрашивать изделия I и II групп сложности, изготовленные из различных материалов, с применением стационарных и ручных установок. Особенно приемлем этот способ при окрашивании мелких изделий не очень сложной формы: деталей приборов, авто-, вело — и мотодеталей, электротехнических изделий, фурнитуры, бытовой техники, мебели, обуви и др. Его используют и при окрашивании средне — и крупногабаритных изделий, таких как кузова и кабины автомобилей, железнодорожные и трамвайные вагоны, автобусы. Хорошие результаты получены как при массовом, серийном производстве, так и при окрашивании единичных изделий. При применении стационарных установок существенно улучшаются санитарно-гигиенические условия труда, и повышается общая культура производства.

Недостатки: сложность и повышенная стоимость окрасочной аппаратуры, некоторые ограничения в использовании лакокрасочных материалов.

Основы способа. Сущность электростатического способа заключается в распылении лакокрасочного материала с одновременным сообщением образующимся аэрозольным частицам электрического заряда, благодаря чему они равномерно осаждаются на противоположно заряженном изделии.

При электростатическом нанесении приемлем любой способ образования аэрозолей, однако наиболее распространены механическое (центробежное), пневматическое и гидравлическое (безвоздушное) распыление. Возникновение заряда на частицах связано с наложением постоянного электрического поля высокого напряжения (50-140 кВ), при этом изделие, как правило, заземляется.

Существует несколько способов зарядки аэрозольных частиц, определяющих различный подход к аппаратурному оформлению процессов. Практическое использование нашли два из них: ионный и контактный.

Ионная зарядка. Ионная зарядка (зарядка ионной адсорбцией) широко используется во многих аппаратах электронно-ионной технологии благодаря высокой эффективности и простоте процесса. Источником ионов обычно является коронный разряд, возникающий в пространстве между двумя электродами, например, между электродной сеткой, соединенной с источником высокого напряжения, и заземленным изделием. Одним из важных свойств коронного разряда является его способность сообщать заряд аэрозолю, находящемуся на некотором расстоянии от электрода.

Заряд возникает в результате адсорбции частицами аэрозоля ионов, возникающих при ионизации воздуха. Адсорбция происходит до тех пор, пока силы отталкивания между ионами, осевшими на частице, и силы притяжения ионов частицей не уравняются. Адсорбция ионов вызывает направленное движение аэрозольных частиц (капель) по силовым линиям поля в сторону окрашиваемого изделия (рис. 8.4).

Рис. 8.4. Схема ионной зарядки частиц:

1 – коронирующий электрод; 2 – молекулы газа; 3 – частица краски; 4 – изделие

Максимальный заряд qмакс, который приобретает капля лакокрасочного материала, может быть вычислен по уравнению Потенье:

где e — диэлектрическая проницаемость лакокрасочного материала; Е – напряженность поля в данной точке; r — радиус капли.

При этом напряженность поля для точечного заряда Q равна:

(8.6)

где — диэлектрическая проницаемость среды (воздуха); l — расстояние от заряда до заземленного предмета.

Контактная зарядка. Контактная зарядка (или зарядка путем электростатической индукции) происходит в результате контакта лакокрасочного материала с острой кромкой распылителя, восполняющего одновременно роль коронирующего электрода. Для лучшей зарядки материала обычно выбирают электрод вытянутой формы, образующий кромку в виде острия. Чем меньше радиус распылителя, тем больше напряженность электрического поля в этом месте и легче возникает коронный заряд, вызывающий распыление и зарядку материала. Коронный разряд образуется на острие кромки электрода, если напряженность поля достигает 3 МВ/м. При этом электрические заряды интенсивно стекают в воздух, вызывая его ионизацию в прилегающем к электроду пространстве.

При подключении высокого напряжения к коронирующему электроду на острие его кромки создается поверхностный заряд большой плотности. Если на такую кромку подать тонкий слой лакокрасочного материала, то он будет заряжаться и под влиянием сил электрического поля вытягиваться и стекать с поверхности в направлении заземленного изделия (рис. 8.5).

Рис. 8.5. Схема электростатического распыления и контактной зарядки частиц:

1 – коронирующий электрод; 2 – слой лакокрасочного материала; 3 – изделие

Образуются направленный движущийся аэрозоль заряженных частиц (капель) лакокрасочного материала.

Заряд капли аэрозоля, полученный при контактной зарядке, определяется из уравнения:

(8.7)

где U – напряжение, подаваемое на электрод; Uк — напряжение тока, составляющее появлению тока коронного разряда; — радиус закругления кромки распылителя; l — расстояние от распылителя до изделия; А – расчетная постоянная; — диэлектрическая проницаемость лакокрасочного материала; — удельное объемное электрическое сопротивление лакокрасочного материала.

Как следует из формулы (8.7), заряд возрастает с повышением приложенного напряжения и уменьшается при увеличении l, , , . Заряд растет так же пропорционально квадрату радиуса капли. Однако масса капли, определяющая кинетическую устойчивость аэрозоля, увеличивается еще быстрее – пропорционально кубу радиуса.

Поэтому высокая степень диспергирования лакокрасочного материала благоприятно сказывается на распылении.

При контактной зарядке лакокрасочного материала заряд аэрозольных частиц в 10–30 раз больше, чем при ионной, поэтому промышленные электроокрасочные установки работают преимущественно с использованием контактного способа зарядки.

Зарядка капель способствует не только их дроблению и направленному движению, но и образованию частиц. В отличие от пневматического при электростатическом распылении факел образуется в результате взаимного отталкивания одноименно заряженных капель. Угол между образующими факела являются функцией напряженности поля Е, радиуса r и заряда Q капли:

Большой угол факела не всегда желателен, т.к. возрастают потери лакокрасочного материала за счет уноса вентиляцией. Поэтому на практике используют различные способы фокусирования материалов с учетом габарита и формы покрываемых изделий.

Заряженные частицы, образующиеся при распылении в электрическом поле, двигаются к поверхности окрашиваемого изделия по определенной траектории. Она формируется под влиянием действующих на частицу сил:

(8.8)

где Fq — сила тяжести; Fk — сила, обусловленная действием электрического поля, Fk = Eq max; FE — сила, обусловленная неравномерным распределением напряженности электрического поля; Fc — сила взаимодействия частицы с другими, близко находящимися частицами.

Противодействующей движению является сила, обусловленная сопротивлением воздуха перемещению частицы. Скорость движения падает пропорционально логарифму радиуса частицы. Так, при максимальной напряженности поля 0,5 МВ/м скорость перемещения частицы радиусом 100 мкм не превышает 1 м/с. Крупные частицы с большой массой, получившие небольшой заряд, при движении могут отклониться настолько, что выпадут из-под влияния электрического поля и будут унесены вентиляцией, не достигнув поверхности изделия.

Разрядка частиц завершает цикл процессов, связанных с переносом вещества в поле коронного разряда, и является одновременно процессом астабилизации дисперсии. Наряду с переходом капель в нейтральное состояние (в результате стекания зарядов на заземленное изделие) происходит их слияние; вязкость образующейся жидкой пленки непрерывно увеличивается вследствие испарения растворителя, соответственно изменяются и электрические параметры слоя.

При прямом контакте капель с поверхностью скорость их разрядки определяется собственной проводимостью материала: чем больше (или чем меньше ), тем быстрее и полнее происходит стекание зарядов. Таким образом, удельное объемное сопротивление на разных стадиях нанесения лакокрасочных материалов играет двоякую роль: с его ростом облегчается зарядка аэрозольных частиц и одновременно затрудняется их разрядка.

Если краска осаждается на уже осевший слой лакокрасочного материала или на предварительно окрашенную (загрунтованную) поверхность, то определяющее влияние на разрядку оказывает сопротивление этого слоя. При большом сопротивлении происходит накопление зарядов на поверхности, осаждения лакокрасочного материала при этом заключается или полностью прекращается.

Поэтому на практике в зависимости от электрического сопротивления пленки наносят 1–3 слоя лакокрасочных материалов. Часто предусматривается нанесение сдвоенных слоев: последующий слой наносят на предыдущий, имеющий относительно низкое значение .

Нанесение лакокрасочных материалов в автоматизированных установках.Положительные качества электростатического распыления наиболее полно проявляются при использовании стационарных установок, работающих в автоматическом режиме.

Рис. 8.6. Принципиальная схема стационарной электроокрасочной установки:

1 — окрасочная камера; 2 – пульт дистанционного управления; 3 – конвейер; 4 – изделие; 5 — электростатический распылитель; 6 — дозирующее устройство; 7 — кенотронный выпрямитель тока; 8 — электростатический генератор; 9 – вытяжная вентиляция

Конструкции таких установок весьма разнообразны, однако все они содержат следующие основные узлы: электростатический распылитель, дозирующее устройство, источник высокого напряжения постоянного тока, включающий электростатический генератор и кенотронный выпрямитель, искропредупреждающее (или предохранительное) устройство, окрасочную камеру (рис.8.6).

Электростатический распылитель – один из важных элементов установок. В зависимости от способа распыления лакокрасочных материалов находят применение распылители электростатические: с неподвижной коронирующей кромкой (чашечные ЭР–7, ЭР–8, ЭРВ–1, грибковые дисковые), пневмоэлектростатические (марки КЭП–2, АРЭГ–1), электроультразвуковые (тип УУЭ-1), гидроэлектростатические (тип КРГЭ–1).

Электромеханические распылители. Наибольшее распространение при окрашивании изделий в электрическом поле получили электромеханические распылители, в первую очередь чашечные (рис. 8.7). Они компактны, просты по устройству и надежны в эксплуатации. Рабочим органом таких распылителей служит коронирующая насадка в виде чаши диаметром 50–150 мм.

Рис. 8.7. Электростатический распылитель (чашечный) ЭР–8:

1 – корпус распылителя; 2 – чаша; 3 – подставка; 4 – кронштейн

Вращение коронирующей насадки осуществляется с помощью электрического привода обычно с частотой 1200–1400 об/мин. В последнее время разработаны высокооборотные чашечные и дисковые распылители, имеющие частоту вращения 30–60 тыс. об/мин. В частности, к ним относится распылитель ЭРВ–1. Лакокрасочный материал, поступающий в электромеханический распылитель, обычно приобретает заряд в зарядном устройстве, куда подается высокое напряжение (80-120кв); далее он поступает на чашу, на кромке которой диспергируется. Производительность электромеханических распылителей 1,5-2,5 г/мин на 1см длины коронирующей кромки. Для распылителей ЭР-8 в зависимости от диаметра чаши (применяют чаши с диаметром 60-10 см) это составляет 1,8-4,5 кг/ч по краске, или 60-150м2/ч по окрашиваемой поверхности.

При больших объемах окрасочных работ установки комплектуют несколькими распылителями (от 2 до 6), которые спаривают механизмами, обеспечивающими их качание или возвратно-поступательное перемещение в вертикальной плоскости (устройства типа «Качалка», «Робот» и др.). Расстояние от коронирующей кромки до изделия обычно 200-300 мм.

Пневмоэлектростатические распылители. Пневмоэлектростатические распылители создают более направленное перемещение аэрозоля лакокрасочного материала, чем электромеханические и тем самым позволяют лучше прокрашивать углубления в изделиях.

Распыление красок в них осуществляется с помощью струи сжатого воздуха, подаваемого под давлением 0,05-0,4 МПа. Производительность по окраске распылителей разных типов колеблется от 30 до 300 г/мин.

Щелевые электростатические распылители. Весьма производительны щелевые электростатические распылители ЩЭР-1 и ЩЭР-2. Длина их коронирующей кромки равна соответственно 500 и 700 мм, а производительность по краске достигает до – 120 г/мин. Они особенно хорошо зарекомендовали себя при окраске крупногабаритных изделий и объектов с несложным профилем поверхности: железнодорожных и трамвайных вагонов, тепловозов, вагонов метро и др.

Источниками постоянного тока высокого напряжения в автоматизированных установках обычно служат высоковольтная выпрямительная установка УВ-160-2,5, каскадный или роторный генераторы. (Распылитель АРЭГ-1 имеет встроенный в корпус электрогазодинамический генератор, повышающий напряжение с 6 до 45 кВ).

Питание электростатических и электродинамических распылителей жидкими лакокрасочными материалами обеспечивается с помощью дозирующего устройства ДКХ-3.

Способом электростатического распыления можно наносить различные виды лакокрасочных материалов: грунтовки, лаки и эмали алкидные, мочевиноформальдегидные, меламиноалкидные, масляно-стирольные, эпоксидные (одноупаковочные) и др. Хорошо наносятся лакокрасочные материалы, у которых , Ом×м, а вязкость 25-70 мПа×с (по реостату), или 14-25 с по В3-4. Для разведения этих материалов применяют разбавители марки РЭ. Толщина однослойных покрытий при нанесении составляет 18-25 мкм. При использовании распылителей с высокой частотой вращения чаши можно применять лакокрасочные материалы с вязкостью 60-80 с по В3-4, при этом на 25-30% возрастает толщина получаемых однослойных покрытий (рис. 8.8).

h, с d, мкм

n×10-4, об/мин

Рис. 8.8. Зависимость предельных значений вязкости h эмали МЛ-12 при нанесении и толщины слоя покрытия от частоты вращения чаши электростатического распылителя

Нанесение лакокрасочных материалов, содержащих высоколетучие растворители, (нитратцеллюлозных, виниловых, акриловых), применяется ограниченно из-за резкого увеличения вязкости на кромке распылителя и повышенной пожаро — и взрывоопасности. Их нанесение допускается только на установках, снабженных искропредупреждающими устройствами. Определенные трудности представляет также нанесение водоразбавляемых лакокрасочных материалов и красок, содержащих металлические пигменты: вследствие высокой электрической проводимости происходит утечка зарядов по слою краски. Это исключает ее зарядку и делает небезопасной работу на установках. Для автоматического пневмоэлектростатического нанесения водорастворимых лакокрасочных материалов с Ом×м разработан распылитель РВЛМ-1.

Способом электростатического распыления, как правило, окрашивают изделия из металла. Возможно нанесение красок и на неметаллические материалы, обладающие поверхностной электрической проводимостью не менее 10-8 см. Так, хорошо наносятся лакокрасочные материалы на древесину с влажностью 10-12%, у которой см. При окрашивании древесины с меньшей влажностью применяют специальные меры для повышения ее электрической проводимости: поверхностное увлажнение, обработку растворами ПАВ (например, 5-10% раствором алкамона ДС-М или КМ в уайт-спирите) или кислот (в частности, фосфорной), нанесение специальных токопроводящих грунтовок.

При окрашивании изделий из пластмасс и резины устанавливают с внутренней стороны изделия металлические экраны или вставки, подводят ток от внешнего источника (способ нейтрализации потенциалов), обрабатывают наружную поверхность растворами ПАВ. Например, осаждение лаков на резиновых сапожках удовлетворительно идет, если на конвейере они навешены на заземленные металлические колодки; полнее осаждаются лакокрасочные материалы на деревянных корпусах радиоприемников и телевизоров с внутренними металлическими вставками.

Большое влияние на равномерность и качество покрытий, получаемых в электрическом поле, оказывает форма окрашиваемых изделий и комплектование их на подвесках. На изделиях сложной конфигурации создается неравномерное электрическое поле: заряды концентрируются на кромках и выступающих частях поверхности, напротив, в углублениях, пазах, они отсутствуют или их плотность ниже. Поэтому лакокрасочный материал осаждается в первую очередь на выпуклых и ровных поверхностях, внутренние углы, полости сосудов, и различные пазы и узкие щели, как правило, не прокрашиваются в электрическом поле. На конвейере экранирование одних изделий другими вызывает неравномерное распределение лакокрасочного материала на поверхности. Для улучшения равномерности часто устанавливают дополнительные не коронирующие электроды или сочетают электростатическое распыление с другими способами нанесения лакокрасочных материалов.

Стационарные электроокрасочные установки снабжены вентиляцией. Скорость движения воздуха внутри камеры небольшая. Обычно не превышает 0,2-0,3 м/с, в открытых проемах 0,4-0,5 м/с. В отличие от камер пневматического распыления электроокрасочные камеры не имеют гидрофильтров. Для обеспечения безопасности обслуживания установки снабжены автоблокировочными и сигнальными устройствами.

Нанесение лакокрасочных материалов с применением ручных установок. Ручные электроокрасочные установки применяют тогда, когда объем окрасочных работ невелик и использование стационарных установок становится нерентабельным. Они удобны при окрашивании единичных и крупногабаритных изделий в условиях бесконвейерного производства, а также при ремонтных работах. Особенно эффективно применение ручных установок при окрашивании сеток, решеток, длинномерных и некоторых других изделий.

Их достоинства: портативность, маневренность, сочетающиеся с более экономным (по сравнению с пневматическим распылением) расходованием материалов.

Получили распространение электроокрасочные установки с механическим (центробежным), пневматическим и гидравлическим распылением лакокрасочных материалов: УЭРЦ-1, УЭРЦ-4, УРЭЦ-4, УРЭГ-4, УРЭГ-2, Ореол-100. Все установки передвижные. УРЭГ-2 – переносная.

Основные их узлы:

1) электрораспылитель с кабелем высокого напряжения и краскораспыляющим шлангом;

2) высоковольтный генератор;

3) краскоподающее дозирующее устройство.

Установка УЭРЦ-4 имеет по два сменных распылителя, один из которых электромеханического, другой пневмоэлектростатического типа. Электромеханический распылитель с вращающейся коронирующей насадкой обеспечивает полноту осаждения красок 94-96%. Его удобно применять при окрашивании изделий и объектов с гладкими поверхностями: железнодорожных вагонов, пультов и щитов управления, станков, корпусов сварочных аппаратов, труб и др. Полнота осаждения красок при использовании пневмоэлектростатического распыления меньше (70-80%), однако он обеспечивает лучшее прокрашивание изделий сложной формы: частей металлорежущих станков, стоек подшипников, деталей турбин и др. Более высокой производительностью (300-600 г/мин по краске) отличаются гидроэлектростатические установки типа УГЭР, наиболее совершенной из них является установка УГЭР-4, укомплектованная распылителем КЭВ-3; краска распыляется в ней под давлением 6-8 МПа.

Электроокрасочная установка УРЭГ-2, используемая для нанесения лакокрасочных материалов на изделия небольших и средних размеров разной сложности (трубы, решетки, сетки и др.), укомплектована пневмоэлектростатическим распылителем со встроенным электрогазодинамическим генератором. Распыление лакокрасочного материала осуществляется под давлением воздуха 0,45-0,60 МПа и напряжением не более 45 кВ; производительности по краске 250-500 г/мин. С помощью ручных электроокрасочных установок обычно наносят мочевиноформальдегидные, глифталевые и пентафталевые лакокрасочные материалы. Оптимальная их вязкость при нанесении электомеханическими распылителями 15-20 с, пневмоэлектростатическими 20-25 с по ВЗ-4. Нанесение нитратцеллюлозных, перхлорвиниловых, водоразбавляемых лакокрасочных материалов, а так же красок, содержащих алюминиевую пудру (молотковые и др.), способом ручного электростатического распыления в целях безопасности обслуживающего персонала не допускается.

Окрашивание ручными электрораспылителями обычно производится в специальных камерах, оборудованных системой вытяжной вентиляции. Внутренние размеры камер выбираются с таким расчетом, чтобы изделия можно было свободно поворачивать в камере в любом положении до стен и пола камеры не менее 0,8 м. В противном случае краска может осаждаться на стены камеры. Объем воздуха, удаляемого из окрасочных камер, определяется по скорости его движения в открытых проемах, которая при использовании электромеханических распылителей принимается равной 0,3-0,4 м/с, пневмоэлектростатических 0,4-0,5 м/с.

При соблюдении необходимых правил пользования ручные электроокрасочные установки не опасны в работе. Конструкции установок исключают искрообразование. Ток короткого замыкания мал и не вызывает опасности для человека. В частности, на установке УРЭГ-2 он не превышает 40 мкА, в то время как в автоматических стационарных установках достигает 0,1 А. Предусмотрено тщательное заземление аппаратуры.

Применение технологии в России

Технология электростатической покраски характеризуется множеством достоинств. Однако в российских условиях применение электростатического распыления пока не нашло массового применения. Основная причина в отсутствии достаточного количества квалифицированных специалистов. Само по себе оборудование отличается сложным устройством, им надо уметь пользоваться, в противном случае вместо электростатического напыления краска будет распыляться обычным образом, что не даст планируемого эффекта.

Еще одна сложность — поиск ЛКМ с нужным уровнем электропроводности. Если показатель будет отличаться от заданного, его можно поменять, но в любом случае без исходной информации не обойтись. При этом выяснить уровень электропроводности зачастую невозможно ни у продавцов, ни у производителей. В результате единственный выход — покупка ЛКМ западного производства, которые существенно дороже отечественных образцов.

Следующий важный фактор — обеспечение качественного заземления. В большинстве случаев это условие должным образом не выполняется. При отсутствии же заземления маляр будет красить не только поверхность, но и самого себя.

Также следует сказать об одном популярном заблуждении: многие маляры считают, что чем больше факел, тем быстрее будет окрашена поверхность. Однако на практике все не так, и увеличение факела лишь превращает электростатический аппарат в обычный краскопульт.

Электростатическая окраска, безусловно, имеет большие перспективы применения. В продаже имеется необходимое оборудование, а технология является хорошо изученной. Однако для большего распространения нанесению краски электростатическим способом нужно специально обучаться, а затем проверять знания на практике.

Технология

Впервые электростатический распылитель был использован в 1941 году американским изобретателем Г. Рансбургом. Методика подразумевала использование электрических полей, по которым передвигаются заряженные частицы краски. Жидкий лакокрасочный материл вступает во взаимодействие с электродом, расположенным в пистолете, в результате чего краске передается высоковольтный отрицательный заряд (60-100 кВт). Заряженные частицы, выйдя из сопла краскопульта, направляются по линиям электростатического поля к заземленному изделию, на которое наносится ЛКМ.

Окрасочный факел возникает благодаря обоюдному отталкиванию заряженных частиц лакокрасочного материала. Важное отличие данной технологии от других методов состоит в отсутствии необходимости в красочном тумане, так как частицы направляются по заданным линиям. Коэффициент переноса краски может колебаться от 70 до 98 процентов. Показатель переноса зависит от проводимости окрашиваемого материала, формы изделия и других косвенных факторов.

Электростатический способ позволяет сократить расход ЛКМ, а сам процесс покраски делает проще. При окрашивании металлических труб традиционным способом нужно несколько раз переворачивать изделие. В случае же с электростатическим пистолетом деталь поворачивать нет необходимости, так как заряженные частицы направляются по силовым линиям и легко огибают препятствия. Окрашивание осуществляется очень равномерно, поскольку на уже обработанном месте краска отталкивает излишки поступающего материала.

Технология покраски своими руками дисков порошковой краской и видео процесса

Принцип порошковой окраски состоит в следующем: в приборе напыления происходит электризация частиц краски, которые в процессе притягиваются к заземленной плоскости детали. Процедура полимеризации поверхности осуществляется в термокамере. Технология включает три этапа:

Подготовительный этап

Некоторые автомобилисты при покраске колесных дисков авто порошковой краской пренебрегают этим пунктом, и, надо сказать, зря. Без качественной подготовки невозможно добиться соответствующего качества покрытия. Мастера применяют следующие способы:

  • Химическая и абразивная обработка
    – процедура по удалению ржавчины и старой краски. Для реализации применяют металлическую щетку, наждачную бумагу, пескоструйный аппарат, а также кислотные и щелочные препараты.
  • Травление
    – устранение загрязнений и коррозии, которые не поддались первичной стадии обработки. Операция совершается с применением растворов фосфорной, соляной, азотной или серной кислоты.
  • Фосфатирование
    – обработка фосфатом железа, марганца или хрома. Метод в несколько раз увеличивает адгезию порошковой краски с плоскостью автодиска.
  • Промывка и сушка
    – удаление продуктов предыдущих этапов обработки и окончательная сушка детали.

Фаза нанесения грунтовки

Итак, покрышка демонтирована, теперь наступает черед грунтовки. Нужно отметить, что по технологии этот этап не предусмотрен, но при окраске автодисков мастера рекомендуют его реализовать. Это способствует, по их словам, лучшей адгезии и антикоррозионной стойкости.

После высыхания грунта его поверхность зачищается при помощи мелкозернистой шлифовальной шкурки. Обычно используются эпоксидно-цинковые и эпоксидные грунты.

Нанесение порошковой краски

Дальнейшая покраска автомобильных дисков своими руками на видео проводится в специальной камере при помощи особого распылителя-аппликатора, который работает по электростатическому принципу. Заряженный порошок наносится на заземленную деталь за счет сжатого воздуха.

Благодаря электростатическому напряжению обеспечивается дальнейшее удерживание краски на поверхности колеса. Метод прекрасно зарекомендовал себя при окраске литых дисков , они выглядят даже лучше, чем новые.

Процесс полимеризации

Деталь, покрытая полимерно-порошковой краской, на финальной стадии устанавливается в термальный шкаф, в котором поддерживается температура 190-220°C. Время для сушки – от 40 до 60 минут. Все профессиональные камеры оборудованы электронным блоком управления.

В гаражных условиях сушильную камеру можно сконструировать своими руками. Для этого собирается ящик с утеплителем, где роль нагревателя отводится обычным ТЭНам. В целях организации конвекции воздуха внутри камеры нужно продумать несложную систему с вентилятором, который устанавливается снаружи шкафа.

Типы распыления

Применяются два вида электростатического распыления — классическое и каскадное. Классика предполагает, что по высоковольтному кабелю на электростатический краскопульт поступает постоянный ток под высоким напряжением. Классическая схема имеет ряд существенных недостатков. Прежде всего, речь идет о нестабильности напряжения в пистолетном электроде. Кроме того, красить достаточно неудобно, так большой кабель стесняет в действиях, а для отключения электропитания нужно всякий раз добираться до трансформатора.

В каскадной методике высокое напряжение формируется не вовне, а в самом пистолете. К пистолету по низковольтному кабелю направляется напряжение всего лишь в 12 В, а уже внутри устройства происходит генерация высокого напряжения. Преобразование осуществляется на каскаде краскопульта. Применяемый кабель тонок и гибок, благодаря чему работать с ним очень удобно.

Каскадный способ позволяет отключать поступление электричества независимо от генератора, а также контролировать уровень напряжения, выбирая подходящий для того или иного вида материала. Само напряжение отличается высокой стабильностью, что позволяет существенно сократить расход ЛКМ. Главный недостаток каскадного распыления — высокая стоимость оборудования. Однако затраты быстро окупаются за счет экономичности данной технологии.

Электростатическое распыление имеет некоторые ограничения, диктуемые следующими обстоятельствами:

  1. Свойствами лакокрасочного материала. Чтобы краска правильно заряжалась на электроде, необходимо сопротивление на уровне не меньше 30 кОм. В противном случае эффективность покраски в электростатическом поле радикально сокращается. В качестве примера лакокрасочного материла с низким уровнем сопротивления можно привести составы со значительными добавками металлической пудры (к таковым относятся эмали типа «металлик»). До последнего времени электростатическое окрашивание не использовалось при нанесении водорастворимых красок, так как существовал высокий риск коротких замыканий по причине электропроводимости жидкости. Последние модели оборудования для электростатического окрашивания позволяют работать с водорастворимыми ЛКМ.
  2. Свойствами материала. Не проводящие ток изделия, такие как пластик и древесина, окрашивать сложно. Облегчить процесс можно при помощи специальных токопроводящих грунтов (в случае с пластиком) или увлажнения (для древесины).
  3. Формой окрашиваемой детали. Как было сказано выше, электростатический метод позволяет окрашивать изделия разных форм, однако в замкнутом токопроводящем контуре напряжение электростатического поля равняется нулю. Поэтому в глубоких выемках отсутствует электрическое поле, из-за чего на такие участки не попадают частицы лакокрасочного материала. Более того, не попадая во всевозможные впадины, краска концентрируется на других участках (например, на кромках), что приводит образованию слишком толстого слоя покрытия. Чтобы избежать подобных проблем (их называют контуром Фарадея), окрашивание труднодоступных мест осуществляется обычным краскопультом — безвоздушным или пневматическим.

Устройство и виды электростатических краскораспылителей

Если сравнивать электростатические краскораспылители с традиционными, то общими чертами можно считать принцип работы материало — и воздухопроводящих каналов, а главными отличиями — наличие электрода, заряжающего ЛКМ, и высоковольтной системы, обеспечивающей наличие электрического потенциала на этом электроде. В дополнение к описанным выше принципиальным отличиям в конструкции краскораспылителей следует также отметить, что корпус традиционных краскораспылителей, как правило, изготавливается из стали или алюминия, в то время как в случае электростатических краскораспылителей корпус обычно выполняется из комбинации изолирующих и токопроводящих пластиков, для того чтобы максимально защитить маляра от поражения электрическим током.

Различают два типа высоковольтных систем электростатических краскораспылителей: классическую и каскадную. Рассмотрим их подробнее.

В случае классических (внешних) высоковольтных систем высокое напряжение постоянного тока подается непосредственно на краскораспылитель от трансформатора (источника высокого напряжения) при помощи высоковольтного кабеля. К достоинствам краскораспылителей, в которых используется классическая высоковольтная технология, относятся простота конструкции и отсутствие электронных элементов в корпусе краскораспылителя; сравнительно малый вес краскораспылителя; встроенная защита от короткого замыкания; меньшая стоимость краскораспылителя и хорошая ремонтопригодность, а к недостаткам — нестабильность высокого напряжения на электроде; отсутствие независимого выключателя электрического питания на краскораспылителе.

Краскопульт «Star 3001»

В качестве примера разберем краскораспылитель «Star 3001». В данном аппарате применяется каскадный способ образования высокого напряжения. Изготавливаются как механические, так и автоматические модификации оборудования. Обе модели могут работать как с безвоздушным распылением, так и с воздушной смесью.

Для водорастворимых ЛКМ и для красок на базе растворителя также существуют отдельные модификации. Каждая модель, в зависимости от ее предназначения, может значительно отличаться по используемым в ней материалам, а также иметь свои конструктивные особенности.

Таким образом, ассортимент оборудования широк, поэтому перед покупкой нужно определиться с тем, как будет использоваться электростатический пистолет. Аппарат «Star 3001» предназначен для работы с ЛКМ на водной основе. Это означает защищенность устройства от короткого замыкания, поскольку конструкция произведена из специального материала. А вот для работы с органическим растворителем «Star 3001» не подходит, поэтому нужно поискать модификацию, корпус которой инертен по отношению к растворителям.

Проблема с контуром Фарадея в распылителе данной модели решается отключением электропитания. При отсутствии питания ЛКМ распыляется только под воздействием давления. Клавиша управления напряжением располагается прямо на корпусе краскопульта, что очень удобно. Кроме того, давление можно контролировать своими руками — достаточно нажать на курок. Пистолет также оснащен памятью, благодаря чему поддерживается до трех вариантов электростатического поля на каждый вид краски.

Немаловажный параметр любого применяемого лакокрасочного материала — электрическая сопротивляемость. Вместе с аппаратом «Star 3001» поставляется зонд, который тестирует ЛКМ на сопротивляемость, тем самым обеспечивая наилучший показатель для электростатического поля.

Несмотря на техническую оснащенность, такой краскораспылитель отличается простотой обслуживания. Корпус легко разбирается, после чего все механизмы доступны визуальному наблюдению. В случае поломки замене подлежат любые детали пистолета. Это обстоятельство позволяет упростить ремонтные работы, а также удешевить их.

Следует отметить малый вес устройства — всего 900 граммов. Благодаря легковесности, работать с аппаратом физически не тяжело, а за счет эргономичной рукоятки еще и удобно.

Для промышленного применения разработана модификация «LARIUS 2 Paint Systems». В такой системе применяется двойная диафрагма, за счет которой краска нагнетается под малым давлением.

Что представляет собой покраска порошковая

Порошковая покраска представляет собой процесс нанесения твердых компонентов дисперсионного состава со специальными пленкообразующими смолами и целевыми добавками.

Область применения технологии порошковой покраски обширна и включает перечень изделий подлежащих данному процессу окрашивания. В качестве примера назовем необходимость покрытия внутренней поверхности труб для нефтедобывающей и перерабатывающей промышленности. Таким образом, применение технологии покраски необходимо в следующих условиях: • повышенное внутренне давление в трубах • высокая температура рабочей среды • присутствие агрессивных сред.

Порошковая покраска металла способна в данном случае исключить неблагоприятные факторы и обеспечить работоспособность и функционирование.

Применение технологии в России

Технология электростатической покраски характеризуется множеством достоинств. Однако в российских условиях применение электростатического распыления пока не нашло массового применения. Основная причина в отсутствии достаточного количества квалифицированных специалистов. Само по себе оборудование отличается сложным устройством, им надо уметь пользоваться, в противном случае вместо электростатического напыления краска будет распыляться обычным образом, что не даст планируемого эффекта.

Еще одна сложность — поиск ЛКМ с нужным уровнем электропроводности. Если показатель будет отличаться от заданного, его можно поменять, но в любом случае без исходной информации не обойтись. При этом выяснить уровень электропроводности зачастую невозможно ни у продавцов, ни у производителей. В результате единственный выход — покупка ЛКМ западного производства, которые существенно дороже отечественных образцов.

Следующий важный фактор — обеспечение качественного заземления. В большинстве случаев это условие должным образом не выполняется. При отсутствии же заземления маляр будет красить не только поверхность, но и самого себя.

Также следует сказать об одном популярном заблуждении: многие маляры считают, что чем больше факел, тем быстрее будет окрашена поверхность. Однако на практике все не так, и увеличение факела лишь превращает электростатический аппарат в обычный краскопульт.

Электростатическая окраска, безусловно, имеет большие перспективы применения. В продаже имеется необходимое оборудование, а технология является хорошо изученной. Однако для большего распространения нанесению краски электростатическим способом нужно специально обучаться, а затем проверять знания на практике.

Плюсы порошковой краски с экономической точки зрения

Рассмотрим, какие есть положительные моменты в покрытии поверхности порошковой краской в экономической области:

  • Так как отходов практически нет, то экономически выгодно купить именно ее, ведь иначе вы будете переплачивать за неиспользованную подтекшую краску, если речь идет о масляной краске.
  • На окрашиваемый материал идет практически вся порошковая краска, как уже было сказано, потерь практически нет.
  • Если краски много, то ее можно использовать повторно. Речь идет о том покрытии, которое не осело на поверхности, когда распыляли краску. Это возможно благодаря ее удачному составу.
  • При этом весь процесс полностью автоматизирован. Поэтому обучаться тому, как правильно красить не приходится долго. Рабочие обычно готовы к работе спустя несколько минут после инструктажа.
  • Потерять при окраске можно всего лишь от одного до четырех процентов краски.
  • При этом практически девяносто пять процентов краски, которая остается не у дел, можно собрать и отправить в повторное использование. Это означает, что порошковая краска имеет высокий показатель утилизации.
  • Так как нет нужды в растворителе, то это может означать, что вы не будете дышать испаряющимся веществом, ожидая, когда он высохнет, что во многом также сокращает время и средства.

Окрасочные установки для нанесения ЛКМ в электростатическом поле

В состав установки для электростатической окраски, как правило, входят краскораспылитель, источник высокого напряжения, воздушные и материальные шланги, питающий кабель, кабели заземления, оборудование во взрывозащищенном исполнении для подачи ЛКМ на краскораспылитель (диафрагменный или поршневой насос, красконагнетательный бак), причем наличие в системе электрического тока высокого напряжения обязывает строго соблюдать правила техники безопасности и тщательно заземлять основные элементы установки.

В случае работы вне помещения, например, при окраске крупногабаритных металлоконструкций вместо источника высокого напряжения используется мобильный пневматический генератор электрического тока постоянного напряжения, который позволяет работать автономно от сетей электропитания.

Заключение

Источник

Где заказать порошковую покраску деталей автомобиля?

Требуется провести покраску насадки на глушитель в Москве? Хотите заказать порошковую покраску суппортов? Обращайтесь в ! Мы специализируемся на данном направлении и располагаем всем необходимым для проведения работ на профессиональном уровне. Покраска проводится опытными специалистами, которые строго соблюдают все технологические процессы и проводят контроль качества в соответствии с государственными стандартами.

Современное оборудование и расходные материалы, качество которых проверено временем и многократным применением, позволяют нам гарантировать получение высокопрочного покрытия, которое обеспечит необходимую защиту обрабатываемому изделию.

Покраска осуществляется в один или несколько из 213-ти цветов по классической шкале “RAL”. Наши специалисты индивидуально подберут схему покраски, благодаря чему цвет элемента будет именно таким, каким его желает видеть заказчик, а автомобиль станет единственным в своём роде, непохожим на другие. Мы проводим как покраску новых элементов, так и реставрацию тех, которые уже побывали в эксплуатации. После неё они снова будут выглядеть как новенькие и получат новую жизнь. Желаете заказать покраску деталей автомобиля? Лучше исполнителя, как «TermoColor», Вам не найти!

В условиях современного кузовного ремонта и покрасочных работ на рынке существует большое количество предложений связанных с различными технологиями нанесения лакокрасочного покрытия. Одним из наиболее качественных и востребованных вариантов в последнее время становится полимерная покраска авто. Выполнить такие работы можно всего за несколько часов к тому же своими руками, но гарантия на эксплуатацию составляет около 10 лет. Если решитесь делать все самостоятельно, то четко соблюдайте технологию, не экономьте на материалах и учтите, что вам потребуется специальное оборудование. Если вы не готовы к таким вложениям, то есть смысл рассмотреть автомастерские, которые предлагают полимерную порошковую покраску, как кузовных деталей, так и дисков.

Технология

Впервые электростатический распылитель был использован в 1941 году американским изобретателем Г. Рансбургом. Методика подразумевала использование электрических полей, по которым передвигаются заряженные частицы краски. Жидкий лакокрасочный материл вступает во взаимодействие с электродом, расположенным в пистолете, в результате чего краске передается высоковольтный отрицательный заряд (60-100 кВт). Заряженные частицы, выйдя из сопла краскопульта, направляются по линиям электростатического поля к заземленному изделию, на которое наносится ЛКМ.

Окрасочный факел возникает благодаря обоюдному отталкиванию заряженных частиц лакокрасочного материала. Важное отличие данной технологии от других методов состоит в отсутствии необходимости в красочном тумане, так как частицы направляются по заданным линиям. Коэффициент переноса краски может колебаться от 70 до 98 процентов. Показатель переноса зависит от проводимости окрашиваемого материала, формы изделия и других косвенных факторов.

Электростатический способ позволяет сократить расход ЛКМ, а сам процесс покраски делает проще. При окрашивании металлических труб традиционным способом нужно несколько раз переворачивать изделие. В случае же с электростатическим пистолетом деталь поворачивать нет необходимости, так как заряженные частицы направляются по силовым линиям и легко огибают препятствия. Окрашивание осуществляется очень равномерно, поскольку на уже обработанном месте краска отталкивает излишки поступающего материала.

Разделение сыпучих смесей на составляющие

На рис 17-34 показана схема установки для электростатического разделения продуктов помола зерна. Из бункера 1 помол поступает на потрясок (лоток) 2, который встряхивается вращающимся эксцентриком 3.Потрясок одновременно служит заряжающим частицы электродом. Заряженные частицы падают между двумя электродами 4, разность потенциалов между которыми составляет десятки киловольт. Под влиянием сил, по закону Кулона, чистый помол отделяется от оболочек зерна (отрубей) и сортируется по ячейкам приемника 5.Трансформатор 6и выпрямитель 7 служат для получения постоянного напряжения на электродах 4.Производительность устройства зависит от ширины лотка 2и составляет около 100 кг

на 1

см ширины лотка в сутки. Потребляемая мощность устройства равна около 500

вт на 1

м ширины лотка.

Рис. 17-34.

Электростатическая установка для разделения составляющих помола муки.

Типы распыления

Применяются два вида электростатического распыления — классическое и каскадное. Классика предполагает, что по высоковольтному кабелю на электростатический краскопульт поступает постоянный ток под высоким напряжением. Классическая схема имеет ряд существенных недостатков. Прежде всего, речь идет о нестабильности напряжения в пистолетном электроде. Кроме того, красить достаточно неудобно, так большой кабель стесняет в действиях, а для отключения электропитания нужно всякий раз добираться до трансформатора.

В каскадной методике высокое напряжение формируется не вовне, а в самом пистолете. К пистолету по низковольтному кабелю направляется напряжение всего лишь в 12 В, а уже внутри устройства происходит генерация высокого напряжения. Преобразование осуществляется на каскаде краскопульта. Применяемый кабель тонок и гибок, благодаря чему работать с ним очень удобно.

Каскадный способ позволяет отключать поступление электричества независимо от генератора, а также контролировать уровень напряжения, выбирая подходящий для того или иного вида материала. Само напряжение отличается высокой стабильностью, что позволяет существенно сократить расход ЛКМ. Главный недостаток каскадного распыления — высокая стоимость оборудования. Однако затраты быстро окупаются за счет экономичности данной технологии.

Электростатическое распыление имеет некоторые ограничения, диктуемые следующими обстоятельствами:

  1. Свойствами лакокрасочного материала. Чтобы краска правильно заряжалась на электроде, необходимо сопротивление на уровне не меньше 30 кОм. В противном случае эффективность покраски в электростатическом поле радикально сокращается. В качестве примера лакокрасочного материла с низким уровнем сопротивления можно привести составы со значительными добавками металлической пудры (к таковым относятся эмали типа «металлик»). До последнего времени электростатическое окрашивание не использовалось при нанесении водорастворимых красок, так как существовал высокий риск коротких замыканий по причине электропроводимости жидкости. Последние модели оборудования для электростатического окрашивания позволяют работать с водорастворимыми ЛКМ.
  2. Свойствами материала. Не проводящие ток изделия, такие как пластик и древесина, окрашивать сложно. Облегчить процесс можно при помощи специальных токопроводящих грунтов (в случае с пластиком) или увлажнения (для древесины).
  3. Формой окрашиваемой детали. Как было сказано выше, электростатический метод позволяет окрашивать изделия разных форм, однако в замкнутом токопроводящем контуре напряжение электростатического поля равняется нулю. Поэтому в глубоких выемках отсутствует электрическое поле, из-за чего на такие участки не попадают частицы лакокрасочного материала. Более того, не попадая во всевозможные впадины, краска концентрируется на других участках (например, на кромках), что приводит образованию слишком толстого слоя покрытия. Чтобы избежать подобных проблем (их называют контуром Фарадея), окрашивание труднодоступных мест осуществляется обычным краскопультом — безвоздушным или пневматическим.

Базовое оборудование для порошковой покраски в условиях цеха:

Участок подготовки поверхности деталей
. Абразивоструйный и/или химический метод. Дробеструйная обитаемая камера подготовки и упрочнения поверхности . Кабина струйной подготовки поверхности трехстадийная предназначена для обработки изделий в водном растворе моющего препарата методом струйного облива.

  • Печь сушки проходная.
    Для сушки деталей после химической подготовки

Камера порошковой покраски с системой вентиляции и рекуперации

. Доступно распыление всех известных окрасочных порошков: эпоксидные порошковые краски, эпоксидно-полиэфирные порошковые составы; полиэфирные порошковые краски.

Печь полимеризации

. Создаёт достаточную для завершения процесса температуру.

  • Транспортная система
    с верхним монорельсом .Перемещение изделий по всем стадиям, без промежуточных перевешиваний вручную.

Особенности технологии нанесения порошковой краски и полимеризация.

Нанесение порошковой краски проходит в три этапа:

Краскопульт «Star 3001»

В качестве примера разберем краскораспылитель «Star 3001». В данном аппарате применяется каскадный способ образования высокого напряжения. Изготавливаются как механические, так и автоматические модификации оборудования. Обе модели могут работать как с безвоздушным распылением, так и с воздушной смесью.

Для водорастворимых ЛКМ и для красок на базе растворителя также существуют отдельные модификации. Каждая модель, в зависимости от ее предназначения, может значительно отличаться по используемым в ней материалам, а также иметь свои конструктивные особенности.

Таким образом, ассортимент оборудования широк, поэтому перед покупкой нужно определиться с тем, как будет использоваться электростатический пистолет. Аппарат «Star 3001» предназначен для работы с ЛКМ на водной основе. Это означает защищенность устройства от короткого замыкания, поскольку конструкция произведена из специального материала. А вот для работы с органическим растворителем «Star 3001» не подходит, поэтому нужно поискать модификацию, корпус которой инертен по отношению к растворителям.

Проблема с контуром Фарадея в распылителе данной модели решается отключением электропитания. При отсутствии питания ЛКМ распыляется только под воздействием давления. Клавиша управления напряжением располагается прямо на корпусе краскопульта, что очень удобно. Кроме того, давление можно контролировать своими руками — достаточно нажать на курок. Пистолет также оснащен памятью, благодаря чему поддерживается до трех вариантов электростатического поля на каждый вид краски.

Немаловажный параметр любого применяемого лакокрасочного материала — электрическая сопротивляемость. Вместе с аппаратом «Star 3001» поставляется зонд, который тестирует ЛКМ на сопротивляемость, тем самым обеспечивая наилучший показатель для электростатического поля.

Несмотря на техническую оснащенность, такой краскораспылитель отличается простотой обслуживания. Корпус легко разбирается, после чего все механизмы доступны визуальному наблюдению. В случае поломки замене подлежат любые детали пистолета. Это обстоятельство позволяет упростить ремонтные работы, а также удешевить их.

Следует отметить малый вес устройства — всего 900 граммов. Благодаря легковесности, работать с аппаратом физически не тяжело, а за счет эргономичной рукоятки еще и удобно.

Для промышленного применения разработана модификация «LARIUS 2 Paint Systems». В такой системе применяется двойная диафрагма, за счет которой краска нагнетается под малым давлением.

Окрасочные установки для нанесения ЛКМ в электростатическом поле

В состав установки для электростатической окраски, как правило, входят краскораспылитель, источник высокого напряжения, воздушные и материальные шланги, питающий кабель, кабели заземления, оборудование во взрывозащищенном исполнении для подачи ЛКМ на краскораспылитель (диафрагменный или поршневой насос, красконагнетательный бак), причем наличие в системе электрического тока высокого напряжения обязывает строго соблюдать правила техники безопасности и тщательно заземлять основные элементы установки.

В случае работы вне помещения, например, при окраске крупногабаритных металлоконструкций вместо источника высокого напряжения используется мобильный пневматический генератор электрического тока постоянного напряжения, который позволяет работать автономно от сетей электропитания.

Заключение

Технологии электростатической окраски совершенствуются на протяжении более полувека, и на сегодня электростатическая окраска во всех ее вариациях — это самый экономичный из методов распыления, обеспечивающий получение высококачественного лакокрасочного покрытия при максимальном переносе ЛКМ на окрашиваемое изделие и значительном снижении затрат на переработку отходов ЛКМ. В зависимости от типа применяемого покрасочного оборудования данный метод окраски может использоваться как в условиях массового и серийного производства, так и при мелкосерийном и единичном производстве изделий.

Электростатическая покраска — это нанесение на поверхность краски с использованием сил взаимодействия между неподвижными точечными электрическими зарядами (кулоновская сила). Лакокрасочный материал (чаще всего на основе воды, но существуют варианты и с органическим растворителем) наносится с помощью специального покрасочного пистолета.

Применение технологии в России

Технология электростатической покраски характеризуется множеством достоинств. Однако в российских условиях применение электростатического распыления пока не нашло массового применения. Основная причина в отсутствии достаточного количества квалифицированных специалистов. Само по себе оборудование отличается сложным устройством, им надо уметь пользоваться, в противном случае вместо электростатического напыления краска будет распыляться обычным образом, что не даст планируемого эффекта.

Еще одна сложность — поиск ЛКМ с нужным уровнем электропроводности. Если показатель будет отличаться от заданного, его можно поменять, но в любом случае без исходной информации не обойтись. При этом выяснить уровень электропроводности зачастую невозможно ни у продавцов, ни у производителей. В результате единственный выход — покупка ЛКМ западного производства, которые существенно дороже отечественных образцов.

Следующий важный фактор — обеспечение качественного заземления. В большинстве случаев это условие должным образом не выполняется. При отсутствии же заземления маляр будет красить не только поверхность, но и самого себя.

Также следует сказать об одном популярном заблуждении: многие маляры считают, что чем больше факел, тем быстрее будет окрашена поверхность. Однако на практике все не так, и увеличение факела лишь превращает электростатический аппарат в обычный краскопульт.

Электростатическая окраска, безусловно, имеет большие перспективы применения. В продаже имеется необходимое оборудование, а технология является хорошо изученной. Однако для большего распространения нанесению краски электростатическим способом нужно специально обучаться, а затем проверять знания на практике.