Причины, особенности и методы защиты от электрохимической коррозии

Коррозия металла – это ржавчина, в первую очередь, которая образовалась на поверхности, чем больше ржавчины, тем глубже она проникает и разрушает материал элемента.

Любую коррозию возможно охарактеризовать тремя признаками:

  • Во-первых, это восстановительно-окислительный процесс.
  • Во-вторых, этот процесс является самопроизвольным, то есть возникает в любых условиях.
  • В-третьих, процесс коррозии чаще всего возникает и распространяется на поверхности элемента, и иногда проникает вглубь.

Коррозия металла — это процесс, который проходит в химических или электрохимических средах, он приводит к повреждению верхних слоев материала.

Коррозии поддаются не только металлические изделия, но и бетонные, а также керамические.

Виды коррозии по характеру разрушения

На материале может протекать коррозия двух видов:

  • Сплошная – распространена на всей поверхности изделия. Такой вид также делится на несколько подвидов:
  • Равномерная – ржавчина появляется в одинаковом количестве на всех участках изделия.
  • Неравномерная – ржавчина появляется с разной скоростью на разных участках.
  • Избирательная – разрушению подвергается определенный компонент металлического сплава.
  • Местная – коррозия образуется на отдельных небольших по размеру участках на поверхности детали. Выражается в единичных углублениях, раковинах и коррозирующих точках.

Виды коррозии металлов по механизму протекания

Существует несколько причины возникновения коррозии металла, химия этих процессов на сегодняшний день достаточно изучена, что помогает эффективно бороться с разрушением материалов.

Химическая коррозия металлов – происходит между металлом и средой, протекает окислительно-восстановительная реакция. Данный вид коррозии характерен для такой среды, в который не может протекать электрический ток. Химическая коррозия по условию протекания может быть:

  • При газовой коррозии ржавчина возникает в результате воздействия на металл газовой среды чаще всего при высоких температурах. Особенностью этого вида является то, что воздействие газовой среды на некоторые металлы приводит к их полному разрушению, но на некоторых металлах (цирконий, алюминий, хром) протекающая реакция оставляет лишь защитную пленку.
  • Жидкостная поверхностная коррозия возникает при воздействии жидких агрессивных сред, также без возможности протекания электрического тока.

Электрохимическая коррозия – эта реакция имеет место быть только в средах, где возможно протекание электрического тока.

Электрохимическая коррозия имеет возможность протекать в самых разных средах, но все они делятся на два типа по условию протекания:

  • Коррозия с участим электролитов в растворах– протекает в среде кислот, соли, воде, оснований.
  • Коррозия в атмосферных условиях – является самой часто встречающейся коррозией.

Виды коррозии по условиям протекания

Как было отмечено выше, по условиям протекания коррозия может быть газовой, жидкостной, атмосферной или в растворах электролитов. Необходимо сделать этот список более полным, поэтому ниже раскрыты дополнительные типы коррозии:

  • Коррозия металлов, протекающая в почвах и грунтах;
  • Биокоррозия, возникающая вследствие жизнедеятельности микроорганизмов на поверхности материала;
  • Структурная — возникает из-за неоднородной структуры металла;
  • Контактная коррозия проявляется при долгом соприкосновении металлов с различными потенциалами в электролите;
  • Трение материала в коррозийной среде;
  • Коррозия, возникающая от трения материала в коррозийной среде;
  • Фреттинг-коррозия проявляется во время возникновения колебаний в коррозийной среде;
  • Кавитация появляется при воздействии существующей коррозийной среды и ударного воздействия извне.

Результат коррозии

Пластинчатая коррозия металла – вид на протекающий процесс

Основные типы атмосферной коррозии

Принято выделять три основных типа атмосферной коррозии: влажная, мокрая, сухая. Жидкая и мокрая, в силу способности проводить электрический ток, протекают по электрохимическим законам, а сухая по химическим.

  • Влажная глубокая коррозия металла будет протекать там, где на металле можно наблюдать тонкую влажную пленку. В зависимости от происходящего в окружающей среде, на пленке может образовываться конденсат, после чего начинается процесс коррозийного разрушения.
  • Мокрая коррозия начинается на поверхности хорошо увлажненной, при относительной влажности окружающей среды около 100%. Капли, образовавшиеся на поверхности, помогают коррозийному износу.
  • Сухая атмосферная коррозия менее агрессивна, потому что процесс разрушения протекает при малой влажности воздуха. Образовавшаяся на изделии пленка замедляет образование ржавчины.

Закорродировавший корабль

Виды коррозии бетона

Бетон является крепким каменным строительным материалом, состоящим из цемента, наполнителя и связующих веществ. Так как этот материал эксплуатируется в условиях открытой окружающей среды, а также нередко в агрессивно-опасных средах, то он так же подвержен коррозийному износу.

Схема коррозии на бетоне

Существует несколько видов бетонной коррозии:

  1. В результате взаимодействия с окружающей средой, на поверхности бетона могут образовываться легкорастворимые соли, которые при взаимодействии с внутренними компонентами материала приводят к его разрушению.
  2. Часто встречающаяся проблема – это разъединение составных частей цементного камня водой или вымывание гидроксида кальция, который образовывается в процессе такой реакции или ранее.
  3. В условиях окружающей среды, в состав бетона проникают вещества, которые имеют достаточно большой объем, в сравнении с исходными продуктами реакции, что приводит к механическим и химическим повреждениям целостности материала, далее эти участки под воздействием окружающей среды начинают коррозировать про принципу 1 или 2.

При коррозии бетона, невозможно выявить только одну причину, зачастую образовавшаяся коррозия – продукты нескольких факторов в совокупности.

Коррозия железа и меди

Коррозия железа

Давно выявлено, что зачастую коррозия (ржавчина) на железных элементах возникает вследствие протекания реакций окисления воздухом или кислотами – окислительно-восстановительные реакции. Как и в любом металле, ржавчина захватывает верхние слои железного изделия и возникает химическая коррозия, электрохимическая или электрическая.

Если рассмотреть каждый этот процесс в отдельности то получится, что при химическом возникновении ржавчины происходит переход электронов на окислитель, в результате образовывается оксидная пленка, а реакция выглядит так:

3Fe + 2O2 = Fe3O4 (FeO•Fe2O3)

Образовавшаяся пленка не защищает материал от дальнейшего возникновения окислительно-восстановительных реакций, она свободно пропускает воздух, что способствует образованию новой ржавчины.

При электрохимической коррозии, которая чаще всего возникает с железом в грунте, протекает реакция с образованием свободного кислорода и воды, если они остаются на железном элементе, то это вызывает новые продукты коррозии.

Fe + O2 + H2O → Fe2O3 · xH2O

Электрическая коррозия железа является самой непредсказуемой, так как возникает из-за блуждающих токов, которые могут попадать к железному элементу от линий электропередач, трамвайных путей, крупногабаритного электрооборудования и другое. Блуждающий ток запускает процесс электролиза металла, а он способствует образованию ржавых пятен.

Коррозия меди

При эксплуатации медных элементов необходимо учитывать причины коррозии, зачастую они обусловлены средой, где находится элемент. Например, в таких средах как: атмосферная, морская вода, при контакте с галогеновыми веществами и в слабых растворах солей медь коррозирует стабильно медленно.

1)Cu+2H2SO4→CuSO4+SO2↑+2H2O

2)Cu+H2SO4→CuO+SO2↑+H2O

Также медь подвергается коррозии в обычных атмосферных условиях:

2Cu+H2O+CO2+O2→ CuCO3*Cu(OH)2

Методы и способы защиты металлов от коррозии

Вследствие того, что коррозийный процесс протекает на верхних слоях металла конструкции, то защита поверхности заключается в создании верхнего защитного слоя для изделия, который убирает следы коррозии на металле. Такими защитными покрытиями выступают вещества металлические и неметаллические.

Важно понимать, что защита от коррозии не избавляет от нее, а лишь замедляет уже происходящие процессы. Однако, если верно подобрать средство борьбы, то возможно замедлить процесс образования коррозии на несколько лет.

Исходя из названия, металлические покрытия – это вещества, в основе которых металл. Например, чтобы защитить конструкцию из железа от коррозии на ее поверхность наносят слои цинка, меди или никеля.

Очистка труб от коррозии

Неметаллические покрытия – специальные вещества, наиболее широкая группа защитных соединений. Они изготавливаются в виде красок, эмалей, смазок, грунтовок, составов на битумной и битумно-полимерной основе и т.д.

Большая популярность неметаллических соединений в устранении следов коррозии  заключается в их широком выборе, большом ценовом диапазоне, легкости изготовления и хороших защитных свойствах.

Наименьшую популярность приобрели химические покрытия из-за необходимости проводить сложные химические процессы:

  • Оксидирование – образование оксидных пленок на поверхностях защищаемых деталей.
  • Азотирование – насыщение верхних слоев материала азотом.
  • Цементация – реакция, при которой верхние слои соединяются с углеродом и т.д.

Также при коррозии металлов существуют способы защиты, при которых на этапе сплавления металлов в них вводят специальные соединения, которые смогут повысить коррозийную устойчивость будущего материала.

Большую группу защиты представляют способы электрохимической и протекторной защиты.

Электрохимическая защита состоит в процессе преобразования продуктов коррозии в среде электролитов с помощью проводящего электрического тока. Постоянный ток присоединяется к катоду (защищаемому материалу), а в качестве анода выступает проводящий металлический источник, который при своем разрушении защищает объект от ржавчины.

Электрохимическая защита от коррозии

Протекторная защита протекает по такому же принципу, однако вместе металлического связующего изделия выступают специальные изделия – протекторы, которые выступают в роли анода. В результате протекающей реакции, протектор разрушается, защищая катод (конструкцию из металла).

Таким образом, хоть коррозия является необратимым процессом, но на данный момент люди научились эффективно замедлять ее губительное воздействие.

Коррозия меди не так известна как коррозийные воздействия на железо. Однако механизмы воздействия на структуру металла схожи. Это спонтанное разрушение при воздействии различного типа агрессивных сред. Однозначно сравнивать понятие ржавчина с коррозией меди нельзя. Коррозия любого металла связана с термодинамической неустойчивостью при влиянии активных элементов, которые находятся в воздухе. Скорость коррозии меди непосредственно будет зависеть от температурных колебаний. Если увеличить ее на 100 градусов, то темп возрастает в 2-3 раза. Далее рассмотрим, как протекает коррозия медных сплавов и как защитить их от окисления в различных средах размещения.

Что нужно знать об электрохимической коррозии?

Начать эту статью хотелось бы с одной цифры: ежегодно из-за коррозии, промышленный сектор теряет до 10% от общего валового продукта. Переводя это значение в денежный эквивалент, сумма будет феноменальной. В нее входят сами потери, борьба с коррозией, а также снижающийся срок службы изделий. Не менее удручающая ситуация с коррозией, поражающей привычные в нашем обиходе металлические полотенцесушители. И ведь именно ржавчина становится первопричиной дальнейших проблем с эксплуатацией и внешним видом изделия.

Специалисты разделяют много видов коррозии. Ее делят по типу распространения, по виду и по скорости протекания. Электрохимическая коррозия – это механизм протекания процесса, возникающего при взаимодействии металла с электролитической средой. Под электролитом в данном случае подразумевается любая среда, способная проводить ток, а это и контакт с почвой, и нахождение металла в воде (влажной среде) и даже коррозия, возникающая при атмосферном воздействии.

С научной точки зрения это обусловлено тяготением металла к растворению. Плотная атомная связь при контакте с электролитом разрушается, и начинается процесс растворения. На практике – это ржавчина, появляющаяся сначала на поверхности изделия, и постепенно распространяющаяся по всей площади. Появление ржавчины говорит о разрушении целостности атомной решетки, следовательно, в месте появления коррозии, металл уже является ослабленным и необходимо принимать меры. В противном случае коррозия будет распространяться, пока не уничтожит все атомные соединения.

Именно коррозии, вызванной «блуждающими токами», подвержены полотенцесушители. Причем не сыграет роли и материал изготовления. Со временем ей будет покрыта даже нержавейка.

Именно коррозии, вызванной «блуждающими токами», подвержены полотенцесушители. Причем не сыграет роли и материал изготовления. Со временем ей будет покрыта даже нержавейка.

Коррозийный налет однозначно портит внешний вид изделия и откладывается на внутренней поверхности, разрушая стояки и перекладины, швы и соединения. Такие процессы могут привести к поломке прибора и аварийной ситуации в дальнейшем.

Технический прогресс в развитии методов борьбы с коррозией

Так как коррозионные потери металла составляют астрономическую сумму, технический прогресс продолжает предлагать новые методы борьбы с ней, по мере развития научных исследований и совершенствования аппаратного обеспечения. К ним относятся:

  • газотермическое напыление, образующее сверхтонкие защитные покрытия;
  • термодиффузионные покрытия, создающие прочную поверхностную защиту;
  • кадмирование, обеспечивающее защиту стали в морской воде.

Рост промышленного производства происходит с постоянным увеличением выпуска металлических изделий. Электрохимическая коррозия, вне зависимости от исторической эпохи, представляет постоянную угрозу огромному объему конструкций и ответственных сооружений. Поэтому создание новых методов и средств борьбы — одна из задач исследований технического прогресса.

Как определить электрохимическую коррозию?

За редким исключением, коррозия формируется на поверхности металла, постепенно разрастаясь и проникая в глубокие слои. Существует несколько типов повреждений разной степени тяжести.

На рисунке показаны виды коррозионного разрушения:

  1. Сплошная. Покрывает всю поверхность изделия равномерным слоем. Возникает при полном контакте с электролитом, например, при нахождении изделия в растворе кислоты.
  2. Неравномерная. Коррозионная пленка покрывает всю поверхность изделия, но внутренние повреждения распространяются неравномерно.
  3. Пятна. Возникают в разных местах и не проникают на большую глубину.
  4. Язвы. Повреждения с глубоким проникновением. Распространение хаотичное.
  5. Точечная. Поражение на большую глубину. Сложный вид коррозии, так как на поверхности может выглядеть как обычное пятно, но при этом с очень глубоким проникновением.
  6. Межкристаллическая. Поражает кристаллическую решетку и в некоторых случаях не имеет выхода на поверхность.
  7. Растрескивающая. Коррозия, возникающая при одновременном контакте с электролитом, и при механическом воздействии на металл. Один из признаков старения механизмов и подвижных деталей.

Сплошная или равномерная коррозия наименее опасна в техническом плане. Она возникает по всей поверхности металла. Легко определяется на глаз и относительно просто поддается удалению. Более сложные процессы, особенно с глубоким проникновением остановить сложнее, а выявить зачастую невозможно без специальной экспертизы.

Электрохимическая коррозия – процесс неизбежный и необратимый. Однако, своевременное обнаружение позволяет принять меры по замедлению этого процесса.

Электрохимическая коррозия – процесс неизбежный и необратимый. Однако, своевременное обнаружение позволяет принять меры по замедлению этого процесса.

Визуальное определение не дает полной картины происходящего. В частности оно не позволяет выявить кинетическую связь, то есть определить скорость протекания процесса. Для этого были разработаны различные меры контроля и преодоления коррозии:

  • Металлография. Ряд методов, часть из которых позволяет проводить анализ без необходимости изъятия образцов. Существуют металлографические методы для определения межкристаллитной коррозии, благодаря которым можно выявить склонность металла к разрушению, а также скорость процесса при определенных условиях эксплуатации.
  • Химические методы позволяют определить целостность структуры кристаллической решетки. Их также довольно много, а самым распространенным является кипячение нержавеющих сталей в натриевом растворе. Анализируется сам раствор на процентное соотношение в нем атомов железа к атомам хрома.
  • Механические испытания. В зависимости от эксплуатационного назначения исследуемого объекта применяют методы испытания на растяжение, прочность, изгиб, вязкость, а также прочность на выдерживание давления.
  • Рентген. Один из наиболее точных методов определения электрохимической коррозии, но самый трудоемкий и затратный.

Выбор метода испытания зависит от многих факторов. В частности от опасности эксплуатации поврежденного металла. В бытовых условиях коррозия определяется визуально, и в большинстве случаев этого достаточно для понимания общей картины происходящего и необходимости принятия мер.

Возвращаясь к разговору о полотенцесушителях, отметим, что наиболее стойким материалом к возникновению электрохимической коррозии считается нержавеющая сталь марки AISI 304 (наиболее качественная). Но и она может со временем дать слабину и тогда вы заметите сначала небольшие темные пятна на поверхности, увеличивающиеся в размерах и в глубине со временем.

Наиболее стойким материалом к возникновению электрохимической коррозии считается нержавеющая сталь марки AISI 304 (наиболее качественная). Но и она может со временем дать слабину и тогда вы заметите сначала небольшие темные пятна на поверхности, увеличивающиеся в размерах и в глубине со временем.

Характерным признаком коррозии является точка-отверстие на очищенной (механическим путем) поверхности, которая свидетельствует о том, что процесс поражения водой с электричеством проходит и внутри. Конечно, существуют и дополнительные способствующие составы, присутствующие в воде — это кислород, хлор, кальций, магний, а также высокая температура! Наиболее подверженными коррозии элементами полотенцесушителя являются сварные швы, на которых в последствие появляются свищи и подтеки.

Из-за чего появляется электрохимическая коррозия?

Следует понимать, что электрохимический процесс неизбежен, но в зависимости от агрессивности среды, факторов воздействия и прочих нюансов меняется время протекания этого процесса. Практически все металлы являются термодинамически неустойчивыми, то есть их структура сама стремится к растворению. Существуют и устойчивые типы, такие как золото, платина и другие металлы, называемые благородными. В природе они встречаются в самородном виде. В то время как привычное железо в рудном, то есть требующем предварительного восстановления.

Электрохимическая коррозия возникает в процессе контакта изделия с электролитом. В природе электролитом является практически все, в том числе воздух. Выделяют три основных типа:

  1. Атмосферную коррозию также относят к разновидностям электрохимического процесса. В процессе эксплуатации металлического изделия, на его поверхности образуется конденсатная пленка, которая и становится проводником. Соответственно, чем в более влажной среде находится объект, тем быстрее в нем будут развиваться коррозионные процессы. Кинетически атмосферная коррозия имеет привязку к уровню влажности. Чем он выше, тем быстрее процесс, и наоборот. При снижении уровня влажности процесс резко замедляется, и это является одним из методов защиты и предотвращения разрушения металла.
  2. Подземная коррозия – отдельный вид. Тут на процесс влияет не только взаимодействие с влажной структурой почты, но и так называемые, блуждающие подземные токи. Они существенно ускорят коррозию, и лучшим методом защиты является изоляция эксплуатируемого изделия. Еще одним важным фактором является температура электролита, то есть проводника, в котором находится металл.
  3. Наиболее распространенная среда для возникновения электрохимической коррозии – вода. Не секрет, что в воде металл быстрее покрывается ржавчиной, однако это не совсем верно. Наибольшему влиянию подвержены металлы, имеющие непостоянный контакт. В судостроении это наблюдается как раннее ржавление ватерлинии. То есть, металл, постоянно находящийся в воде стареет медленнее, чем тот, который находится над ее поверхностью. Более того, чем больше глубина погружения, тем медленнее процесс разрушения и обусловлено это понижающейся концентрацией кислорода. А вот полотенцесушители, находящиеся как раз в непостоянном контакте с водой, а также в условиях высокой концентрации кислорода, попадают в зону максимального риска.

То есть, электрохимическому воздействию подвержены все металлы, и один из методов защиты связан с изменением эксплуатационной среды, если это возможно. В промышленности тщательно контролируют влажность в помещении и температуру. Но при уличной эксплуатации эти процессы контролировать невозможно, поэтому разрабатываются специальные методы защиты металла.

Откуда же берется электрический ток, поражающий стенки полотенцесушителя, в системе водоснабжения? Вариантов, к сожалению, много и далеко не от всех можно обезопасить себя:

  • Неправильная организация заземления (или его отсутствие), которым становятся трубы ХВС, ГВС и отопления, расположенные в земле. «Блуждающие токи» в этом случае появляются от неисправной бытовой техники, которой в каждой квартире сегодня достаточно. Не решенная с заземлением проблема может сказаться не только на выводе приборов из строя за счет электрохимической коррозии, но и быть опасной для жизни людей, контактирующих с ними, в случае скачка напряжения.
  • Неправильная прокладка электропроводов. Токи могут попасть в трубы из-за повреждения кабеля или контактов.
  • Недобросовестные соседи, использующие «нулевые» провода для остановки показаний счетчика за электричество. Опасность аналогичная первому пункту, но риск получения «смертельного» удара током значительно выше.
  • Разница потенциалов между материалами изготовления труб. Этот момент актуален для старого жилого фонда, где наряду с нержавейкой устанавливалась обычная черная сталь. Токи возникают от взаимодействия этих металлов. Минимизировать риск возникновения коррозии можно только на этапе проектирования и монтажа коммуникаций дома, то есть на инженерном уровне.
  • Те самые популярные сегодня металлопластиковые трубы! А именно в случае установки пластиковой трубы в отрезок от стояка до полотенцесушителя. Здесь возникает мощнейший диссонанс потенциалов, а сама вода проносит ток внутри трубы к полотенцесушителю, находя его слабые места. Не менее опасный момент — это статическое электричество, накапливаемое внутри труб при трении воды о пластиковые стенки.
  • Токи извне. В полотенцесушитель электричество может попасть из стояка, а оттуда из труб, проложенных глубоко под землей на далеком расстоянии от жилья. Как он попадает туда? За счет воздействия других мощных приборов, транспорта и подстанций электричества.

Одним словом — полностью предупредить возникновение на полотенцесушителе электрохимической коррозии нельзя, так как от владельцев зависит крайне мало. А, если быть точнее, то совсем ничего.

Одним словом — полностью предупредить возникновение на полотенцесушителе электрохимической коррозии нельзя, так как от владельцев зависит крайне мало. А, если быть точнее, то совсем ничего.

Технология создания станций защиты

Еще одной технологией создания катодной защиты является подключение элемента к внешним источникам тока. В большинстве случаев для этих целей сооружаются специальные станции катодной защиты (СКЗ), которые состоят из нескольких элементов — главный источник тока, анодное заземление, различные кабели и провода, соединяющие отдельные элементы конструкции и вспомогательные пункты с механическим или компьютерным управлением, которые позволяют контролировать параметры.

Чаще всего данная технология используется для объектов, расположенных рядом с проводами электропередач — это могут быть трубопроводы, различные фабричные постройки и так далее. СКЗ могут работать во многопоточном режиме — в таком случае они будут обслуживать сразу несколько защитных систем. На трубах большое распространение получила практика, при которой на трубы ставится несколько отдельных блоков для более эффективного распределения тока. Дело все в том, что в случае протяженных трубопроводов в местах подключения труб к источникам тока формируются специальные точки с повышенным уровнем напряжения электрического поля — из-за этого может происходить повреждение труб. Применение подобных блоков позволяет распределить электричество равномерно по всему защитному контуру.

Автоматизация

Контрольные пункты могут работать как в ручном, так и в автоматическое режиме:

  • В случае ручного управления изменение параметров напряжения регулируется оператором. На физическом уровне регуляция осуществляется путем переключения работы трансформатора. Регулируется работа обмотки, что позволяет менять параметры электрического тока.
  • В случае автоматического управления изменение параметров напряжения регулируется самим устройством на основе параметров, которые когда-то задал оператор. На физическом уровне управление осуществляется с помощью специальных полупроводников-тиристоров. Они включаются или выключаются при отклонении параметров электрического тока от заданных параметров.

Как предотвратить появление электрохимической коррозии?

Процесс защиты начинается еще на этапе создания металлического объекта. Существуют определенные нормы эксплуатации. Они разрабатываются исходя из экономической целесообразности и безопасности. Яркий пример — цинкование. Оцинкованные металлы гораздо меньше подвержены электрохимической коррозии, однако магистральные трубопроводы из них не делают. Экономически это невыгодно, поэтому для трубопроводов разрабатываются другие методы, например изоляция.

Цинковый слой на полотенцесушителях из нержавеющей стали — одно из наиболее часто встречающихся методов сохранения целостности и защиты поверхности.

Цинковый слой на полотенцесушителях из нержавеющей стали — одно из наиболее часто встречающихся методов сохранения целостности и защиты поверхности.

Легирование – наиболее распространенный способ повышения коррозионной устойчивости. На этапе создания сплава в его состав добавляется определенный процент металлов, с наименьшей подверженностью коррозии. К сожалению, периодическая таблица элементов не дает описания фактора устойчивости, однако некоторые закономерности прослеживаются. Наименее устойчивыми являются щелочные металлы, находящиеся в 1 и 2 группах. Однако в подгруппах, обозначенных в таблице синим цветом, прослеживается связь с атомным номером. Чем он выше, тем устойчивее металл:

  • медь (29);
  • цинк (30);
  • серебро (47);
  • кадмий (48);
  • золото (79).

Также закономерность наблюдается в побочных подгруппах 4 и 6:

  • титан (22);
  • хром (24);
  • цирконий (40);
  • молибден (42).

И так далее. А наиболее устойчивые металлы находятся 8 группе (осмий, иридий, платина), но ввиду их дороговизны, в легировании сталей они используются крайне редко.

Что касается защиты готового изделия, то тут выделяется 4 типа, каждый из которых делится на несколько способов. Например, металлические покрытия разделяют на:

  • диффузионные;
  • гальванические;
  • металлизационные.

Разнится технология нанесения защитного слоя, но объединяет их суть защиты. Металлическое изделие покрывается слоем другого металла, более устойчивого к электрохимической коррозии. Это позволяет сохранить характеристики изначальной стали, используемой при производстве изделия, но повышает уровень защиты, так как коррозия воздействует на верхний слой.

Неметаллические методы защиты также делятся на несколько категорий:

  • лакокрасочные;
  • оксидные;
  • фосфатные;
  • эмалевые;
  • полимерные.

Суть этих методов в нанесении на поверхность неметаллического компонента. Они менее затратные, но уступают по качеству металлизированным видам. Любое покрытие имеет ограниченный срок службы, зато можно обновлять покрытие без существенных затрат.

Суть этих методов в нанесении на поверхность неметаллического компонента. Они менее затратные, но уступают по качеству металлизированным видам. Любое покрытие имеет ограниченный срок службы, зато можно обновлять покрытие без существенных затрат.

Помимо этого, существуют методы защиты, не связанные с самим изделием. Они заключаются в снижении агрессивности среды. Сюда можно отнести понижение уровня влажности в помещении, или добавление в среду специальных ингибиторов, то есть замедлителей процесса. С подземными сооружениями часто применяют электрическую защиту, направляя на изделие отрицательный заряд тока, тем самым превращая его в самостоятельный проводник. Это защищает изделие от блуждающих токов, но не снижает воздействия влаги.

Как защитить полотенцесушитель от воздействия «блуждающих токов»? Вот несколько реальных способов:

  1. И крайне важное. Доверять установку полотенцесушителя только профессионалам с определенным уровнем квалификации, подтверждающей возможность осуществлениями ими такого рода работ!
  2. Обязательно заземлить прибор. Это можно сделать несколькими способами. Технически для металлических труб потребуется подсоединиться к РЕ-шине электрического щита на этаже с помощью медного провода. Для металлопластиковых труб потребуется установить между шаровым краном и элементом подсоединения металлическую вставку, например, нипель — на него подсоединить провод из меди и также связать с ближайшим электрощитом. В комбинированной системе потребуется дополнительно соединить проводом разорванные металлические части стояка.
  3. Уровнять потенциалы в пределах комнаты. Для этого используется специальная система уравнивания и устанавливается коробка с пластиковым корпусом с заземляющей шиной. К шине с помощью медного кабеля подсоединяются все «потенциально» проводящие ток приборы. Саму шину, имеющую большее сечение, соединяют с этажным электрощитом.
  4. Есть выход из ситуации попроще — приобретение полотенцесушителя из цельнотянутой трубы, пример это полотенцесушитель .
  5. Заменить водяной полотенцесушитель на электрический. Все электрические полотенцесушители имеют небольшую мощность, поэтому включать их можно в обычную электрическую розетку. Но, так как в ванной комнате постоянно присутствует вода и бывает высокая влажность, подключение прибора должно производиться только через устройство защитного отключения (УЗО) и автоматический выключатель (автомат). Заземление здесь также обязательно!!!

Влияние кислоты и щелочи

Коррозия меди в кислых средах менее выявлена. Наиболее сильным будет влияние азотной и серной кислоты. Если поместить в концентрат этих кислот, то она способна полностью растворяться. Эти особенности учитывают, выбирая сплавы, для элементов и трубопроводов в нефтегазовой промышленности.

В щелочной среде эффект вообще не наблюдается, так как щелочь позволяет восстановиться меди с 2-валентного до 1-валентного состояния. При этом стоит вспомнить, что она сама является щелочным металлом.

Защита от окисления и коррозии при влиянии кислот осуществляется ингибиторами – веществами, замедляющими химическую реакцию. Можно выделить следующие типы:

  • · Экранирующий – формируют защитные плетки и исключают возможность контакта с кислотами.
  • · Окислительный – происходит образование оксида, вступающего в реакции с кислотами, тем самым препятствуя их проникновению к структуре металла.
  • · Катодный – предназначен для повышения перенапряжения катодов раствора благодаря чему химические реакции снижают свою интенсивность.

Как правило, коррозию меди в кислых средах предотвращают экранирующим типом ингибиторов. Наиболее распространен бензотриазол, который совместно с соляными образованиями меди формирует защитную оболочку, замедляя скорость коррозии или практически полностью ее прекращая.

Возможно ли устранить следы появления электрохимической коррозии?

К сожалению, не существует стопроцентного метода защиты от коррозии, по крайней мере, экономически обоснованного. Любое изделие рано или поздно подвергнется старению, и избавиться от него будет сложно. Если изделие начало покрываться ржавчиной, в первую очередь следует определить причину.

К сожалению, не существует стопроцентного метода защиты от коррозии, по крайней мере, экономически обоснованного. Любое изделие рано или поздно подвергнется старению, и избавиться от него будет сложно. Если изделие начало покрываться ржавчиной, в первую очередь следует определить причину.

В быту чаще всего встречается атмосферная коррозия, а способ ее устранения – нанесение неметаллических компонентов, или проще говоря, окрашивание. Однако и тут есть свои нюансы, так как если не устранить следы коррозии, она продолжит распространяться и под покрытием, сведя все старания к нулю.

Для начала необходимо устранить источник заражения. В большинстве это поверхностные очаги, которые удаляются механическим путем, то есть зачисткой. Сложности возникают с очагами глубокого проникновения, когда нет возможности снять такой слой, чтобы устранить дефект. Также особое внимание следует уделить устранению оксидной пленки с поверхности. Она является тем самым электролитом. А простой способ – это обезжиривание. Применяются любые средства с октановым числом: бензин, растворитель и так далее. Не стоит пренебрегать этим процессом, так как если на окрашенной поверхности останется пленка, разрушение продолжится даже под слоем эмали или полимера.

А еще лучше — обратиться к инженеру-проектировщику УК. Он подскажет корень проблемы и поможет с ее решением.

Свойства меди

Медь – это самый первый металл, который стал использовать человек. Она золотистого цвета, а на воздухе покрывается оксидной пленкой и приобретает красно-желтый цвет, что отличает ее от других металлов, имеющих серый оттенок. Она очень пластична, обладает высокой теплопроводностью, считается отличным проводником, уступая только серебру. В слабой соляной кислоте, пресной и морской воде коррозия меди незначительная.

На открытом воздухе происходит окисление металла с образованием оксидной пленки, защищающей металл. Со временем она темнеет и становится коричневого цвета. Слой, покрывающий медь, называют патиной. Он изменяет свой цвет от коричневатого оттенка до зеленого и даже черного.

Методы защиты от коррозии металлов актуальны. Потому что металл является одним из самых востребованных материалов применяемых в автомобилестроении. И несмотря на то, что в некоторых областях его успешно заменяют, основная проблема, связанная с использованием металлических изделий  это коррозия. Виды и методы защиты коррозии металла различаются друг от друга.

  Коррозия, разрушение металла в результате электрохимического воздействия. Это растворение во влагосодержащей или воздушной среде электролита или химического воздействия, в результате которого происходит соединение металлов с химическими элементами, находящимися в воздушной или водной  среде. Ржавление это коррозия железа и его сплавов, коррозия других металлов сводится к окислению, образованию оксидов. Химическая коррозия возникает в результате воздействия сухих газов и жидкостей, вступающих в химическую реакцию с металлом.

Виды коррозии металлов:

— процессы это химические и электрохимические

-по характеру разрушения равномерная, и не равномерная

— по виду коррозионной среды газовая, жидкостная, атмосферная, почвенная

Химическая коррозия

Основана на реакции между металлом и агрессивной средой. Результатом этой коррозии является образование на металле окалины или в случае с медью образуется зеленый налет. Этот тип коррозии распространяется равномерно по всей поверхности металла. Химическая коррозия не так сильно воздействует на металл, как электрохимическая.

          Электрохимическая коррозия

Это процесс, при котором металлы и сплавы утрачивают часть своих электронов, они переходят в электролитический  раствор,  образующийся на поверхности металла в виде ионов, а электроны, замещающие атомы металла, переходят в металл с отрицательным зарядом, образуется гальваническая реакция в результате чего происходит разрушение металла. Металлы применяемые в строительстве подвергаются, как правило электрохимической коррозии, из за присутствия влаги на поверхности металла, вызвано это постоянным изменением температуры, в результате чего образуется конденсат.

 Атмосферная коррозия

Атмосферная коррозия металла, аналогична протеканию электрохимической коррозии, в связи с наличием влажности воздуха. При повышении влажности свыше 70 процентов происходит интенсивная потеря стали. Также на процесс коррозии влияет наличие агрессивных элементов в окружающей среде таких как углекислый газ, диоксид серы,

По охвату поверхности коррозия может быть равномерная, при этом она не представляет большой опасности, если не достигает критических размеров повреждения металла. Наиболее опасна неравномерная коррозия металла Потому что могут образовывать отдельные очаги повреждения металла, что приведет к значительному ослаблению элементов металлической конструкции. 

Избежать процессы коррозии, полностью невозможно, но снизить воздействие этих процессов возможно.

   По видам различают несколько  мер воздействия на коррозию.

Методы защиты от коррозии металлов

Методы защиты от коррозии металлов разделяются на технологические, активные и пассивные.

 Активные методы

Методы защиты от коррозии металлов предполагают постоянное воздействие на металл, к ним относятся способы изменения коррозионной среды. Это снижение кислотности почвы, снижение содержания хлора в воде. Также к активному методу относится протекторная защита, она заключается в связывании металла с контактным материалом, который больше подвержен окислению, он называется протектором и по сути является громоотводом. Принимает на себя электролизные процессы, влияющие на ржавление металла.

Технологические приёмы

Это когда при производстве металла происходит добавление в стальной сплав хрома , титана, марганца, никеля, которые помогают получить сталь с антикоррозийными свойствами. Например при добавлении хрома на поверхности металла образуется оксидная пленка большой плотности

 Пассивные методы

Происходит изолирование металла при помощи различных покрытий, которые препятствуют образованию коррозии. Применяют катодное и анодное покрытие.

Анодное покрытие

При применении  анодного покрытия металл покрывают другим металлом с большим отрицательным потенциалом. Это как правило цинк, либо кадмий. В настоящее время распространена защита металла посредством нанесения слоя цинка.

 Катодное покрытие

производится металлами с более положительным потенциалом. При катодном покрытии металла соблюдается механическая защита металла. В качестве катодного покрытия применяют олово медь. никель. Для покрытия металла применяют горячий метод, напыление, металлизацию, гальванизацию, При горячем методе сталь помещают в расплавленный металл, который покрывается тонким слоем. Горячий способ применяют при лужении, покрытие металла оловом, и цинкование.

Оксидирование

Также применят химические способы покрытия металла, это оксидирование, образуется оксидная пленка, которая защищает металл от коррозии, ещё этот процесс называют воронение стали. Также можно обработать сталь анодированием, это электролиз алюминия. Так же посредством фосфатирования  и азотирования.

Применение эмалей и грунтов

Наиболее доступным методом защиты металла является применение специальных эмалей и грунтов.

    Они осуществляют барьерную защиту от воздействия вредных факторов окружающей среды, она заключается в механической защите поверхности. Нарушение покрытия происходит при образовании микротрещин, в результате происходит возникновение подпленочной коррозии, для предотвращения проводят пассивацию поверхности металла, при помощи специальных лакокрасочных покрытий.

В состав, входят специальные химические агенты. К таким лакокрасочным покрытиям относятся грунты и эмали, имеющие в своём составе фосфорную кислоту, и другие ингибирующие элементы, замедляющие процесс коррозии. Более эффективными лакокрасочными материалами являются те которые осуществляют протекторную защиту. Это достигается путем добавления, в лакокрасочные покрытия металлов создающих донорские электронные пары, к ним относятся цинк, магний и  алюминий.

Для защиты металлических конструкций, которые эксплуатируются в условиях промышленной атмосферы, разрабатываются специальные эмали, образующие, влагозащищающие уретановые покрытия. Для защиты от постоянного контакта с водной средой выпускаются эмали, способные наносится на цинк, медь и другие поверхности.

В настоящее время на рынке представлен широкий спектр антикоррозионных эмалей. Одним из новшеств является покрытие металла фторопластом, он обладает химической инертностью практически ко всем агрессивным средам. Эмали на его основе наносятся кистью, воздушным и безвоздушным распылением, на очищенную поверхность металла. При применении, того или  иного материала необходимо учитывать факторы такие как вид металла условия его эксплуатации, производственные возможности и целесообразность использования.

Средства коррозионной обработки применяются в зависимости от марки металла, воздействующей среды, действующих на него нагрузок. Для каждой сферы эксплуатации конструкции предусмотрены нормативы. Оптимальным методом является, обработка металла в условиях завода. То есть нанесение, транспортировочного грунта.

Прежде чем он попадет на строительную площадку. Нанесение антикоррозионных материалов обеспечивают всего на всего 20 процентов защиты металла, основным фактором влияющим на качественную защиту металла является его предварительная обработка, от грязи . ржавчины, а также любых других веществ которые будут оказывать препятствие для окрашивания поверхности.

Обработка металла от коррозии 

   Механическая очистка поверхности при помощи щеток, скребков а также с применение электроинструмента с различными насадками

  Пескоструйная очистка наиболее эффективный метод для очищения поверхности, но имеющий ряд недостатков, таких как низкая производительность, создание запыленности, что нарушает условия труда на строительной площадке.

  Гидроструйная очистка повышает производительность, а применение абразивных материалов улучшает качество очистки.

  Химическая очистка. Подразумевает применение специальных материалов которые разделяются на смываемые и несмываемые.

Смываемые методы химической очистки

К смываемым относятся 5% раствор соляной или серной кислоты, но при использовании этих материалов необходимо применять вещество, замедляющее химический процесс, так называемый ингибитор. Если не замедлить химическую реакцию помимо ржавчины уничтожится и сам металл. Можно использовать 15-30 % раствор ортофосфорной кислоты, в результате ее применения ржавчина превращается в твердую структуру, которая и является защитой от последующей коррозии. Хорошо помогает смесь 50 г молочной кислоты на 100 мл вазелинового масла. Кислота преобразует ржавчину в соль, а вазелиновое масло её растворяет.

Несмываемые методы химической очистки

 Относят применение грунт преобразователей, ржавчина преобразуется в грунт, и не требует дальнейшего смывания. Если не удаётся полностью избавиться от ржавчины необходимо для предварительного окрашивания металла применить грунтовку со специальными антикоррозионными свойствами. Окончательная обработка поверхности производится с использование лаков, красок, эмалей со специальными свойствами.  

Этапы антикоррозионных работ 

  • Подготовка необходимых материалов.
  • Нанесение грунтовки обеспечивающей лучшее сцепление эмалей.
  • Нанесение эмалей с защитным покрытием
  • Сушка покрытия или его термообработка.

Наиболее эффективным способ нанесения лакокрасочных покрытии считается метод безвоздушного напыления. Так как  он наиболее качественно позволяет прокрашивать. Имеющиеся неровности металла.

Менее эффективный способ это прокрашивание кистью. Нежелательно наносить лакокрасочные покрытия валиком.

Контроль качества выполненных работ

Применяемые методы защиты от коррозии металлов подвергаются контролю качества. Выполняется с целью проверки ранее выполненного производственного контроля. Предупреждение дефектов. Разработка мер по устранению обнаруженных дефектов. Контроль качества антикоррозионных работ начинается с проверки документации. Должны быть предоставлена документация на объект антикоррозионной защиты, на применяемые материалы, сертификаты о качестве продукции. По окончании проведения контроля качества работ составляется акт содержащий сведения о месте проведения работ, о состояния проведенных работ, о примененных материалах их марки и расходе. Сведения о организации исполнителе, и подписи лиц проводивших работы. Комиссия, проводящая контроль качества работ проверяет следующие параметры:

— вид антикоррозионного покрытия, не должно быть наличие мест не подвергнутых обработке.

— проверяется толщина слоя покрытия путем замера в различных местах, где предположительно возможна не качественная обработка.

— контролируется адгезия лакокрасочного материала с металлической поверхностью.

Нарушения выявляемые, при контроле качества работ.

После выполнения работ образуется ржавление на поверхности обработанного металла, это связано с тем что не был соблюден, температурный режим или не удалена полностью влага. Так же возможна недостаточная очистка металла от окислов, это приводит к возникновению последующей коррозии. Не достаточно убранные различные загрязнители масло, мыло, соли все это приведет к нарушению лакокрасочного покрытия дальнейшему ржавлению металла. Присутствие пыли на обрабатываемой поверхности снижает адгезию. Что приводит к отслоению лакокрасочного покрытия. Не выдерживание времени, которое допустимо на нахождение металла без обработки приводит к его ржавлению, также должна соблюдаться межслойная выдержка, растворитель не успевает раствориться и происходит его просачивание через другие слои. Что приводит к нарушению покрытия в виде пузырения. Все эти нарушения, выявленные при проведении контроля качества, подлежат немедленному устранению.